
Recursion, Efficiency, and 
the Time-Space Trade Off;

Mutual Recursion

Checkout Recursion2 project from SVN



 Exam 2, tomorrow, open-book, open notes
◦ Can start at 7:30am if you want extra time

 Key Topics:
o Cohesion

o Coupling

o Immutable Classes

o Side Effects

o static

o Scope

o Interfaces

o Polymorphism

o Event-based prog.:

o ActionListener

o MouseListener

o Inheritance

o Abstract classes

o Object-oriented design

o CRC Cards

o Recursion





 Always have a base case that doesn’t recurse

 Make sure recursive case always makes 
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time





Thanks for 
David Gries for 
this technique

parameters
and local variables

method name, line number scope box

1. Draw box when method starts

2. Fill in name and first line no.

3. Write class name (for 
static method) or draw 
reference to object (for 
non-static method)

4. List every parameter 
and its argument value.

5. List every local variable declared 
in the method, but no values yet

6. Step through the method, update the line number 
and variable values, draw new frame for new calls

7. “Erase” the frame when the method is done. Q1-2



 Why does recursive Fibonacci take so long?!?

 Can we fix it?



 A deep discovery of computer science

 In a wide variety of problems we can tune the 
solution by varying the amount of storage 
space used and the amount of computation 
performed

 Studied by “Complexity Theorists”

 Used everyday by software engineers

Q3





 Two or more methods that call each other 
repeated

Q4



 Hofstadter Female and Male Sequences:

 Questions:
◦ How often are the sequences different in the first 

50 positions? first 500? first 5000?



Should have completed Status 
Report for Cycle 2 and listed 
User Stories for Cycle 3


